
Automatic DiUerentiation

Ingo Blechschmidt

July 9th, 2015

1 What automatic diUerentiation achives

Given code which implements a function x 7→ f(x), automatic diUerentation gives us code
which implements its derivative x 7→ f ′(x). The code obtained this way is exactly the same as
if we’d worked out the derivative on paper.
The input code to automatic diUerentiation may contain arbitrary control structures such as

if conditionals or while loops. Therefore it is applicable to a wide range of problems:

• The basic use case is to Vnd the derivative of a function.

• Assume that we’re using Newton’s method to solve a parameter-dependent equati-
on f(x, θ) = 0 for x. We might be interested in how the solution x(θ) depends on θ. This
is trivial with automatic diUerentiation, we just feed it our Newton code.

• Assume that we’re solving some parameter-dependent ordinary diUerential equation. We
are interested in the dependence of the solution (at the Vnal time, say) on the parameter.
For this, we just hand our diUerential equation solving code to automatic diUerentiation.

Automatic diUerentiation is totally unlike numerical diUerentiation. With numerical diUeren-
tiation, we approximate f ′(x) by some diUerence quotient like

f(x+ h)− f(x)
h

or
f(x+ h)− f(x− h)

2h
.

This approach faces severe problems: If h is large, the quotient won’t be a good approximation
to the true derivative. Instead, it will give the slope of some unrelated secant. If h is small, the
approximation will be good in theory. But practically, with Woating-point arithmetic, a huge
loss of precision may occur, since we are subtracting two nearly equal numbers.
Automatic diUerentiation is also unlike symbolic diUerentiation, which operates on the level

of terms. Symbolic diUerentiation is useful if our goal is to obtain formulas for various quantities,
but it isn’t particularly suited for eXcient evaluation to Woating-point numbers.

1

2 The basic idea of automatic diUerentiation

To grasp the basic idea of automatic diUerentiation, assume that there exists a magical number ε
such that ε2 = 0. This number ε should not itself be zero, as else we couldn’t extract any
meaningful information from calculations with ε.
The set of real numbers doesn’t contain such a number. Nevertheless, watch:

(x+ ε)2 = x2 + 2xε+ ε2 = x2 + 2xε

(x+ ε)3 = x3 + 3x2ε+ 3xε2 + ε3 = x3 + 3x2ε

1

x+ ε
=

x− ε
(x+ ε) · (x− ε)

=
x− ε
x2

=
1

x
− 1

x2
ε

So it appears that plugging in x+ ε into a function f yields the derivative f ′(x) along with
the function value f(x), as the coeXcient of the magical number ε.
We exploit this observation with automatic diUerentiation. To calculate the derivative f ′(x),

given code for f(x), we feed the code with x+ ε and then extract the coeXcient of ε from the
result. Of course, the given code didn’t expect to be called with magical ε’s instead of ordinary
Woating-point numbers. But in a language with operator overloading, there’s no way for the
code to prevent such unusual evaluations. We discuss this in more detail below.

3 A closer look: the dual numbers

Recall how we construct the complex numbers C from the real numbers R. We deVne C :=
R× R and set

(x, a) + (y, b) := (x+ y, a+ b),

(x, a) · (y, b) := (xy − ab, xb+ ay).

These formulas don’t appear from nowhere. Instead, setting i := (0, 1), they are precisely the
formulas needed such that the identity i2 = −1 holds. Writing (x, a) = x+ ai, we call x the
real part and a the imaginary part.
In a similar way, we can construct the dual numbersR[ε]/(ε2). We deVneR[ε]/(ε2) := R×R

and set

(x, a) + (y, b) := (x+ y, a+ b),

(x, a) · (y, b) := (xy, xb+ ay).

Again, these formulas can be motivated. We write ε := (0, 1) and x+ aε := (x, a). Then these
rules can be obtained by formally expanding (x+ aε)+ (y+ bε) respectively (x+ aε) · (y+ bε)
and imposing the relation ε2 = 0.
It’s easy to implement a data type of dual numbers in languages such as Haskell or Python.

2

1 -- Haskell

2 data D a = D a a deriving (Show,Eq)

3

4 instance (Num a) => Num (D a) where

5 D x a + D y b = D (x + y) (a + b)

6 D x a * D y b = D (x * y) (x * b + a * y)

7 negate (D x a) = D (negate x) (negate a)

8 fromInteger n = D (fromInteger n) 0

If f is a function (Num a) => a -> a, then evaluating f (D x 1)will yield D (f x) (f' x).
A live example in the interactive Haskell shell looks like this:

> let f x = x^2

> f (D 5 1)

D 25 10

We can also deVne a higher-order function which takes a function and returns its derivative:

> let diff f x = b where D y b = f (D x 1)

> diff f 5

10

1 # Python

2 class Dual(object):

3 def __init__(self, x, a):

4 self.x = x

5 self.a = a

6

7 def __add__(self, other):

8 return Dual(self.x + other.x, self.a + other.a)

9

10 def __mul__(self, other):

11 return Dual(self.x * other.x,

12 other.x * self.a + self.x * other.a)

>>> def f(x): return x*x

>>> f(Dual(5,1)).x

25

>>> f(Dual(5,1)).a

10

4 Why automatic diUerentiation works

Taylor expansion gives a slick proof that automatic diUerentiation works for polynomials. Recall
that if f is a polynomial, we have the identity

f(x+ h) = f(x) + f ′(x)h+
1

2!
f ′′(x)h2 +

1

3!
f ′′′(x)h3 + · · · .

3

The sum on the right only looks like an inVnite sum. In fact, it terminates with the term contai-
ning hdeg(f) being the last one. This identity is purely algebraic; no convergence considerations
are necessary. Therefore it’s plausible, and in fact easy to prove, that this form of Taylor expan-
sion holds over any kind of numbers – the real numbers, the complex numbers, and the dual
numbers. Plugging in h := ε, we obtain

f(x+ ε) = f(x) + f ′(x)ε,

with all further terms dropping out because ε2 = ε3 = · · · = 0. This is the reason why
automatic diUerentiation works on polynomials.
For the general case we prove the following theorem: If a function f is built from other

functions using addition, multiplication, and composition, and if automatic diUerentiation works
for the constituent functions, then it also works for f .
To this end, deVne the lift of a diUerentiable function f : R→ R to be the function

f : R[ε]/(ε2)→ R[ε]/(ε2), x+ aε 7→ f(x) + f ′(x)aε.

A precise statement of the theorem is then: Let f : R → R and g : R → R be diUerentiable
functions. Then

f + g = f + g, f · g = f · g, f ◦ g = f ◦ g.
For fun, we verify the case for multiplication and composition:

(f · g)(x+ aε) = f(x+ aε) · g(x+ aε)

= (f(x) + f ′(x)aε) · (g(x) + g′(x)aε)c

= f(x)g(x) + (f(x)g′(x) + f ′(x)g(x))aε

= f · g(x+ aε)

(f ◦ g)(x+ aε) = f(g(x+ aε))

= f(g(x) + g′(x)aε)

= f(g(x)) + f ′(g(x))g′(x)aε

= f ◦ g(x+ aε)

In numerical practice, code for evaluating a function may well be huge and complex. However,
it is composed of elementary functions (like sine and cosine) and addition, multiplication, and
composition. If the library for automatic diUerentiation correctly implements the elementary
functions, any composite function will be correctly derived as well.

5 Caveats and outlook

Higher order Automatic diUerentiation can be easily extended to calculate higher derivatives
as well. For instance, employing a magical number ε such that ε3 = 0, we have for polynomials

f(x+ ε) = f(x) + f ′(x)ε+
1

2!
f ′′(x)ε2.

We could also simply use nested dual numbers.

4

Higher dimensions Automatic diUerentiation can also be extended to multiple dependent
or independent variables. The procedure described here is called forward-mode automatic
diUerentiation, which is eXcient for functions R→ Rn. There is also a variant called backward-
mode automatic diUerentiation, which is eXcient for functions Rn → R.
Fun fact: Using backward-mode automatic diUerentiation on code for evaluating a neural

network (“feedforward”) automatically gives code for the standard backpropagation algorithm.

Poor man’s automatic diUerentiation Stuck with a language without operator overloa-
ding? And don’t feel like using one of the time-tested code-transformation packages, which are
available even for Fortran? Then check whether the following variant of automatic diUerentiati-
on is good enough for you. Its idea is to employ the standard imaginary unit i instead of ε as
magical number: Approximate f ′(x) by

f ′(x) ≈ Im
f(x+ hi)

h

with h small. Since Taylor expansion yields

f(x+ hi) = f(x) + f ′(x)hi− 1

2!
f ′′(x)h2 − 1

3!
f ′′′(x)h3i+ · · · ,

the imaginary part of f(x+ hi)/h is

f ′(x)− 1

3!
f ′′′(x)h2 + h4 · (· · ·),

which might be a good approximation to f ′(x) if h is suXciently small.

> import Data.Complex

> sin (0 :+ 0.001) / 0.001 -- the correct derivative is 1.0

0.0 :+ 1.0000001666666751

Points of non-diUerentiability Consider the absolute value function with its point of non-
diUerentiability. How should |x+ aε| be deVned? Of course, for positive x it should be x+ aε
and for negative x it should be −x− aε. But for x = 0 there is no sensible deVnition of |x+ aε|.
An implementation either has to throw an error in this case or return a Vctional value such as 0
or NaN.
The problem is exacerbated by terms like

√
x4. This term is inVnitely diUerentiable, even in

the point x = 0. However, the chain rule cannot be used evaluate the derivative. Automatic
diUerentiation as a kind of gloriVed chain rule will therefore not work correctly either. Without
a symbolic approach it’s not possible to automatically simplify the expression to

√
x4 = x2; also,

this kind of simpliVcation will not work with more complex expressions such as
√
x4 + y4.

Luckily, this problem doesn’t seem to surface often. One explanation is that non-differentiabi-
lity often occurs at isolated points. Precisely hitting those points with Woating-point operations
is hard. Secondly, many numerical algorithms don’t use non-diUerentiable functions such as
absolute value and square root in problematic places – for instance, Newton’s method for solving
nonlinear equations and all the familiar methods for solving ordinary diUerential equations
don’t.

5

Consistency error Applied to code which would (in the absence of rounding errors) exactly
compute a function f , automatic diUerentiation will result in code which exactly computes
its derivative f ′ (again in the absence of rounding errors). However, sometimes our code only
calculates an approximation of the correct value – even if there were no rounding errors. For
instance, this is the case when solving ordinary diUerential equations with Euler’s method or
some more sophisticated method.
Automatic diUerentiation will then produce code which gives the exact derivative of our

approximated value, but not of the correct theoretical value. As a concrete example, consider
the function f given by the blue curve in the following plot.

Assume that our code for evaluating f actually evaluates the function given by the red curve.
If we are only interested in the function values, we might be content with this approximation.
However, automatic diUerentiation would yield the derivative of the red curve, which is far oU
from the derivative of f . One could describe such a situation as “discretize Vrst, then derive”
instead of “derive Vrst, then discretize”.
Fortunately, this kind of pathology doesn’t seem to occur often in real world problems. Give

it a try!

Synthetic diUerential geometry Do you want to employ inVnitesimal numbers like ε not
only in your numerical algorithms, but also in your theoretical mathematical research? Do you
want to freely use ε’s as the physicists do? There is a way to do that, while at the same time
staying mathematically rigorous. Check out an expository blog post by Andrej Bauer

http://math.andrej.com/2008/08/13/intuitionistic-mathematics-for-physics/

comment-page-1/

or these notes for high school students (in German):

https://github.com/iblech/mathezirkel-kurs/raw/master/thema05-sdg/blatt05.pdf

6

http://math.andrej.com/2008/08/13/intuitionistic-mathematics-for-physics/comment-page-1/
http://math.andrej.com/2008/08/13/intuitionistic-mathematics-for-physics/comment-page-1/
https://github.com/iblech/mathezirkel-kurs/raw/master/thema05-sdg/blatt05.pdf

	What automatic differentiation achives
	The basic idea of automatic differentiation
	A closer look: the dual numbers
	Why automatic differentiation works
	Caveats and outlook

