
Hohmann and beyond

by Luigi Amedeo Bianchi

Abstract

This are just some preliminary notes for an introduction to Astrodynamics. They refer often
to Kerbal Space Program.

Theorem 1. (Hohmann) Given two circular orbits with the same centre and lying in the same
plane (concentric and complanar) of radii r1 and rf > r1 respectively, the two-impulse transfer
manoeuvre from the �rst to the second orbit that minimises the total velocity increment �vTOT is
the transfer along the elliptical orbit of periapsis r1 and apoapsis rf, the same orbital plane as the
two given orbits and the same direction as the starting orbit.

Figure 1. Hohmann transfer

Remark 2. Possible situations: launch from the surface of a planet, transfer between two circular
orbits around Kerbin.

Proof. Set �=M �G. We have that the velocity of the �rst circular orbit is vc1, with vc1=
�

r1

q
,

while the �nal velocity is the one of the circular orbit of radius rf, i.e. vcf, with vcf=
�

rf

q
. Other

variables of interest: v1~ , velocity of the �rst impulse, vf~ , one of the �nal impulse, ' is the initial
elevation, i.e. the angle between v1~ and vc1, while  is the �nal one, the angle between vf~ and vcf.
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We are aiming to minimise

�vTOT= jv1~ ¡ vc1j+ jvcf ¡ vf~ j=�v1+�vf

We can simplify the problem at hand by using the preserved quantities:

E=
v1
2

2
¡ �
r1
=
vf
2

2
¡ �
rf

=) vf
2 = v1

2¡ 2 � (rf ¡ r1)
r1 � rf

(energy, from vis-viva equation) and (impulse / angular momentum)

c= r1 v1 cos '= rf vf cos  =) cos  =
r1
rf

v1
v2

cos ':

Now we can take advantage of those to express both �v1 and �vf in terms of v1:

�v1= jv1~ ¡ vc1j= v1
2+ vc1

2 ¡ 2 v1 vc1 cos '
q

�vf = jvf~ ¡ vcf j= vf
2 + vcf

2 ¡ 2 vf vcf cos  
q

= vcf
2 + v1

2¡ 2 � (rf ¡ r1)
rf r1

¡ 2 vcf v1
r1
rf

cos '
r

We can rescale everything in terms of the speed in the internal orbit, vc1= /� r1
p

by setting x= /v1 vc1.
We get then

�vTOT

vc1
= x2¡ 2 x cos '+1
p

+ x2¡ 2
�
r1
rf

�
/3 2
cos '¡ r1¡ 2 (rf ¡ r1)

rf

s
=D(x; ')

and we want to minimise D(x; '), with the additional constraint of the orbit having apoapsis
greater or equal than rf (because we want to reach that orbit). If we consider the partial derivative
with respect to ' we have:

@D

@'
=
v1 vc1
�v1

sin '+
v1 vcf /r1 rf
�vf

sin '

we have that the minimum is attained in '= 0, independently of the speed, hence of x. We can
then consider only the case D(x)=D(x; 0) and di�erentiate in x:

dD
dx

= vc1
x¡ 1
�v1

+ vc1
x¡ ( /r1 rf)

/3 2

�vf
:

We can observe that x>1, otherwise we'd have apoapsis at r1, and then it follows that the derivative
is always positive and the solution to our problem is the minimum value of x (i.e. the minimum
value of v1) such that we can actually reach the �nal orbit. For obvious geometrical reasons it
corresponds to the value v1 such that the ellipse is tangent in the apoapsis too, i.e.

v1
2

2
¡ �
r1
=¡ �

r1+ rf
v1
2= vc1

2

�
2¡ 2

1+ /rf r1

�
:
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This covers the case where the transfer orbit lies on the same plane of the initial and �nal orbit.
Leaving the plane is in this case not such a great idea, as we'd just add more terms to �vTOT. �

Remark 3. The time needed for the Hohmann transfer is the time required for travelling half the
ellipse, that is

TH=�

¡ r1+ rf

2

�
3

�

s
:

We can also express �vTOT

vc1
in terms of rf

r1
, which will turn out to be useful to compare Hohmann

transfer to other manoeuvres. We have

�vTOT

vc1
=

�v1
vc1

+
�vf
vcf

=
v1¡ vc1
vc1

+
vcf ¡ vf
vc1

=
2 � /rf r1
1+ /rf r1

s
¡ 1+ 1

/rf r1

r
¡ 2

/rf r1 (1+ /rf r1)

r
:

An easy computation provides us with the interesting insight that the maximum of this ratio is
attained for /rf r1= 15.58, in which case �vTOT= 0.536 vc1.

Remark 4. If the orbits are elliptical due to the Oberth e�ect it is usually optimal to leave the
internal orbit at the periapsis. We still need to check both cases, as the con�guration of the two
orbits might cause it to be better to leave the internal orbit at the apoapsis.

Rocket equation and speci�c impulse Why do we want to reduce �v anyway? Let's consider
a rocket �ying with velocity v~ and subject to some external forces of sum F~ (e.g. gravitational,
atmospheric friction...). Let ve~ 1 be the ejection velocity of the propellant (with respect to the
rocket) in a (in�nitesimal) time dt. We want to get the module �v of the corresponding velocity
variation of the rocket. We set the mass of the rocket (including engine mass and fuel mass and
payload mass) to m. In a time dt the rocket is subject to the following variation of momentum:

[(m¡ dm) (v~ +dv~)+dm (v~ ¡ ve~ )]¡mv~ =F~ dt

where in the �rst term we have the di�erence between the momentum at time t0 + dt and the
momentum at time t0. Since external forces are not impulsive, we have that F~ dt!0. If we consider
a �rst order approximation and forget about the second order term dmdv~ , we get

mdv~ = ve~ dm;

which projected along v~ gives

dv=¡ve
dm
m
;

hence

�v= ve log
�
m0

mf

�
1. Maybe a di�erent notation is better, as for masses we have m_e denoting the mass of the engine... So maybe
v_f (m_p is the mass of the payload)
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with m0 the mass of the rocket at time 0, and mf the mass at the end of the manoeuvre. The fuel
used for the �v variation is then m0 ¡ mf. It makes sense to introduce the following quantity,
called speci�c impulse:

Isp=
ve
g

with g being the gravitational acceleration at sea level (9.81 on Kerbin or Earth). The speci�c
impulse (which has seconds as its unit, at least in the most common formulation, given above), is
a measure of the e�ciency of the engine used (namely it depends on the engine and the fuel used).
As it is clear from the previous equation for the �v, the higher the speci�c impulse is, the better.

Engine Isp (vac) mass thrust TWR
Rocketdyne F1 263 s 8400 kg 6.77 MN 82.27

R25 452.3 s 3526 kg 2.28 MN 65.91
Merlin 1D 340 s 490 kg 0.8 MN 150
RD 171 M 337 s 9300 kg 7.9 MN 86.9
RD 107 A 310 s 1190 kg 1 MN 89.9

PPS 1350 1.5 kW 1650s 5.3 kg 0.088 N 0.0017

Table 1. Earth engines

Engine Isp (vac) mass thrust TWR
Rockomax Mainsail 310 s 6000 kg 1.5 MN 25.48

LV-T45 320 s 1500 kg 0.2 MN 13.59
LV-N* 800 s 3000 kg 0.06 MN 2.04
PB-ION 4200 s 250 kg 2 kN 0.816

Table 2. Kerbal engines

Might be worth noting that usually (rocket) engines have di�erent values for the speci�c impulse
depending on being or not in the atmosphere (compared to be in the vacuum). Also worth stressing
is that this rocket equation (or Tsiolkovskij equation) holds for engines that (approximately) �re
in a single impulse, and does not hold for engines such as electrical ones (very low thrust, even if
they have a huge Isp).

Moreover it is not necessarily a good measure of comparison for engines, not just for problems as
the one above (thrust vs isp, instant vs long time), but also because an engine with a very high
Isp might have a huge mass, thus using a lot of its power to move itself, so it is better to compare
the work provided by each engine. Reminder: thrust is given by

T~ = v~ � dm
dt

and its unit is Newtons, while thrust to weight ratio (TWR) by

TWR=
T

m � g

and is a pure number.

Bi-elliptic transfer and comparison with Hohmann. The Hohmann theorem above tells
us that the Hohmann transfer is optimal among those with 2 impulses, but what if we relax this
hypothesis and consider the case with 3 impulses? We get the bi-elliptic transfer.
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Figure 2. Bielliptic transfer

So we start once again in I, on the circular orbit of radius r1, we have a �rst burn �v1 along the
same direction as vc1 (prograde) and we start the �rst elliptical transfer orbit, with semi-major axis
a1=

r1+ r2
2

, where we stay until we reach the apoapsis P (lying at a distance r2>rf from our gravity
centre). In this point we burn prograde again (�v2), raising the periapsis to height rf and starting
a second elliptical transfer orbit of semi-major axis a2=

r2+ rf
2

. When we reach the periapsis of this
orbit (at F), it is time for the third and last burn�vf , which is retrograde and circularises the orbit.

Using the same ideas as for the Hohmann Theorem, we can compute:

v1
2(I)
2

¡ �
r1
=¡ �

r1+ r2
;
v1
2(P )
2

¡ �
r2
=¡ �

r1+ r2
;
v2
2(P )
2

¡ �
r2
=¡ �

r2+ rf
;
v2
2(F )
2

¡ �
rf
=¡ �

r2+ rf
:

And now, since

�v1= v1(I)¡ vc1; �v2= v2(P )¡ v1(P ); �vf = v2(F )¡ vcf ;

we can compute the three �v (or better, their ratio with vc1):

�v1
vc1

=
2 � /r2 r1
1+ /r2 r1

r
¡ 1; �v2

vc1
=

2 � /rf r1
/r2 r1 ( /rf r1+ /r2 r1)

s
¡ 2

/r2 r1 (1+ /r2 r1)

r
;

and

�vf
vc1

=
2 � /r2 r1

/rf r1 ( /rf r1+ /r2 r1)

r
¡ 1

/rf r1

r
:

Now we can set x= /rf r1 and y= /r2 r1 and we can write /�vB
vc1

in term of these as

�vB
vc1

=
2 � y
1+ y

r
¡ 1+ 2 �x

y (x+ y)

r
¡ 2

y (1+ y)

r
+

2 � y
x (x+ y)

r
¡ 1

x

r
:
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We are interested in when this manoeuvre is better than Hohmann, i.e. when its fuel consumption
is less, i.e. when the �v required is less, so we study where �vB¡�vH<0, or equivalently when

/�vB
vc1
¡ /�vH

vc1
<0. The answer is provided by this inequality (holding for y>x, i.e. when r2>rf):

2 � y
1+ y

r
¡1+ 2 �x

y (x+ y)

r
¡ 2

y (1+ y)

r
+

2 � y
x (x+ y)

r
¡ 1

x

r
¡ 2 �x

1+ x

r
+1¡ 1

x

r
+

2
x (1+x)

r
<0

and is represented in the following picture:

Figure 3. Comparison between Hohmann and bielliptic

So, when /rf r1> 15.581 any choice of r2> rf provides some gain, while for /rf r1< 11.94 Hohmann
transfer is always better. In between if we take r2 big enough we can gain with a bielliptic transfer.

The best case is for r2=1, for which we'd have �vB=
¡

2
p
¡ 1
�� �

r1

q
+

�

rf

q �
. This case shows

us the problem that we might have with a bielliptic transfer: we have to travel two half ellipses,
so the total time is

TB=�

¡ r1+ r2
2

�
3

�

s
+ �

¡ r2+ rf

2

�
3

�

s
:

Anyway, if we are not in a hurry, for which kind of missions can we use such manoeuvre to save
fuel, i.e. when does it happen that the ratio of the radii is such that it allows a bielliptic transfer?
In KSP we can use it to travel from LKO (or MKO) to an higher orbit or to the Mun (or Minmus,
but we have a problem...). On the other hand the bielliptic manoeuvre is not suitable for transfers
between planets, as the Kerbol System is quite small: even if we were to send a prob from Kerbin
to Eeloo when it is at his furthest it would be a ratio of 8.69 between the radii, so that would not
be fuel sparing.

On the other hand in our good ol' Solar System we have not only the transfers between orbits
around the Earth, but also from LEO (or MEO) to the Moon, and from Earth to Uranus ( /rf r1�19),
to Neptune ( /rf r1� 30) or to Pluto ( /rf r1� 39) and beyond...

Remark 5. It might also be worth noting that the highest possible saving of �v with a bielliptic
transfer compared to a Hohmann transfer is 8%, so nothing spectacular, but still not quickly
discarded, considering that a big part of the mass of a spacecraft consists of fuel.
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Change of plane. Before, when I mentioned Minmus, I stated that we have a problem with that,
and the problem is that Minmus' orbit lies on a di�erent plane than an equatorial orbit around
Kerbin. So moving to Minmus requires a change of plane. Let's see how we do it! We start (and
�nish) with a circular orbit of radius r, so their speed is

vc1= vc2= vc=
�
r

q
;

and if we are changing the plane by an angle # we have

�v=2 vc sin /# 2;
�v

vc
=2 sin /# 2:

This means that to change the plane of an angle #= 60�, we need �v = vc, while to change it of
an angle of 180� (i.e. to reverse orbit) we need �v=2 vc (very reasonable).

Note that we �re in a direction which is orthogonal to both the tangent to the orbit (we want the
orbit to stay the same, radius-wise) and the vector to the center of mass. This direction is called
the normal direction. Also note that the point where we execute the burn is a point that lies on
both the original orbit and the new one, i.e. is in the intersection of the two planes. One must not
think of the point where we burn as rising in space.

Remark 6. The further away we are from the gravity centre, the cheaper the manoeuvre is.

This remark tells us something: maybe we can gain some fuel if we send the probe far enough so
that the �v required for the change of orbit, change plane and come back is less than the fuel
necessary to change plane staying in the same orbit. So we aim for a 3-burns manoeuvre.

The �rst prograde burn of �v1 takes us on an orbit, on the same plane, of apoapsis rf >r1, then
we have a manoeuvre that just changes the plane (while we are at the apoapsis), by a burn of
�v2=2 v2 sin /# 2, and �nally we have a retrograde burn at the periapsis to lower the apoapsis back
to r1 and circularise the orbit once again. The �v for this last burn is exactly the same needed
for �v1, so the total is

�vTOT=2�v1+�v2:

Now we use the same change of variables as before, i.e. x= /rf r1 and we consider

v2
2

2
¡ �
rf
=¡ �

r1+ rf
=) v2= vc

2
x (1+ x)

r
;

whence

�v2
vc

=2
2

x (1+x)

r
sin

#
2
:

At the same time we have

2�v1
vc

=2

 
2x
1+x

r
¡ 1

!

and we can proceed to minimise /�vTOT
vc with respect to x, for �xed #. We get (computations!!!

Insert in future, maybe) the following answer:

xott=
sin /# 2

1¡ 2 sin /# 2
;
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which holds for xott > 1. We can check how, for �xed x, the function that we are minimising
is is behaving wrt #. We go and see when it happens that xott = 1, which is for sin /# 2 = /1 3, i.e.
for # � 38.94�. So for 0< # < 38.94� we have that a single burn manoeuvre is more e�cient, for
38.94�6 #6 60� we can have a more e�cient 3-burns manoeuvre by choosing x= xott. Actually,
any 1<x6xott provides some improvement wrt single burn. When we reach 60� we hit xott=1,
so any choice of x> 1 gives some bene�t, and the bigger the x the better. (The reason is that the
derivative is always negative, but increasing to 0)

Again for practical reasons we will choose some x that gives us enough bene�ts while it doesn't
take too long (the time taken is the time for an elliptic orbit of semi-major axis r1+ rf

2
).

Remark 7. There is an obvious generalisation to this manoeuvre, that is to split the angle in 3
contributes #1+#2+#3=# and include each of them in one of the three burns. This way we can
perform even better.

Hohmann transfer with change of plane. If we need to change the plane we can split the
contributions in two, one of each burn. This is exactly the idea of the previous remark. To choose
the optimal � to be taken care of in the �rst burn, we need to solve numerically a minimisation
problem.

Flybys. We can use gravity to save fuel. We get the so-called slingshot or gravity assist. We
can use that to accelerate or decelerate, or just to modify our trajectory. For example the Cassini
spacecraft was able to reach Saturn with 2km/s �v instead of the 15.7 km/s required by the
Hohmann transfer thanks to the 2 �ybys with Venus, one with the Earth and one with Jupiter.
From a time perspective it needed 6.7 years instead of the 6 required by Hohmann. Also Ulysses
(change of plane, out of the ecliptic). Problem: you can't force the planets to be where you want
them! There are situations where this is not a problem: for example in the Mun landing tutorial
you can use a �yby with the Mun (clockwise) to slow your craft down, saving fuel for a soft landing
(in contraposition with hard landing, jargon for �crashing�).

We already mentioned in passing the Oberth e�ect: it states that a prograde manoeuvre is the most
e�cient if performed at the periapsis. The Oberth e�ect is easy to prove formally, but is trickier
to understand from an intuitive point of view. We have that when we perform the burn the whole
craft + fuel system preserves the kinetic energy (because the potential energy is the same in the
point), so we have

1
2
(M +m) v2=

1
2
M (v+�v)2+

1
2
m (v¡ ve)2:

On the other hand, if we consider only the spacecraft we have

�E=
1
2
M (v+�v)2¡ 1

2
Mv2=

1
2
M �v2+Mv�v

and so we see that the higher v is, the more e�cient the burn, as we gain more kinetic energy than
just /1 2M �v2. We could say that we are �stealing� it from the fuel that we are leaving behind.

Of course one can combine the two techniques presented in a powered �yby, the only problem
being, in real life, the precision of such manoeuvre and the timing issues due to communications
lags (try playing with RemoteTech...).

What else? Something we can't use in KSP, due to the SOI and 2 bodies approximation (hence
no Lagrangian points and so on... Low energy transfers, ballistic capture and Interplanetary trans-
port network. Just a passing remark: on an Earth-Moon LET the fuel savings can be up to 25%.

Free return trajectory. Or how to bring tourists around the Mun, get some science and land
back on Kerbin with a single burn from Kerbin orbit! Philipp would complain about my drawing,
here, so I will just mention it.
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