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Abstract

Following [1], we give a review over the standard theory of expectation values with a decisive
focus on an intuitive view on this topic.

1 Revision of basic theory: Conditioning on regular events
and o-Algebras of simplest type

We assume that the reader is already familiar with basic conditional probability theory (e.g. “Given
the information that the sum of two dice is 9, what is the probability for the first dice to show a
57”) and that he has an understanding of the following topics:

Theorem 1. Law of total probability
Let (Q,2,P)be a probability space and (B;)ic1 an at-most countably collection of disjoint sets with
]P(Lﬂiel B,-) =1. Then for every event Ac2

P(A)=>_ P(A|B:)-P(B))

icl

Theorem 2. Bayes’ theorem

Let (2,2,P)be a probability space and (B;)ic1 an at-most countably collection of disjoint sets with
]P(Lﬂie] Bi) =1. Then for every event A €2 having probability P(A) >0 and every k€I

P(A[Bg) - P(Bx)

P(By|4) = >, P(A[B:) P(B;)

Definition 3. Conditional expectation of random variables on regular events

Let X € LY(P) (i.e. X has a finite “ordinary” expectation) and A € A be an event with probability
P(A) >0. Then we define

]E[lAX] . ]E[lAX]
P(A) ~ EB[L4 @)

]E[X|A]E/X(w)]P(dw|A):
For A €2 with probability P(A) =0 we set E[X|A]=0.

According to the last term we can interpret the conditional expectation as the center of mass of
X on A, just like the common expectation IE[X] can be thought of as the center of “probability
mass” on the whole probability space.



E[X 4]

Figure 1. A visualization of conditional expectation: The contour plot in grey denotes contour lines of
the density function. The expectation value will in this case be near the maximum of the density function
as there is a lot of probability mass around it. The shade in red denotes a measurable set (event) A. The
center of mass of X’s probability distribution conditioned on A is depicted as well.

Having defined conditional expectations on specific events A by IE[X|A] we could ask ourselves if
we can generalize that notion to collections of sets A. In probability theory, those are o-Algebras.
Consider a common dice with six sides. We choose the probability space canonically: Q={1,2,...,6}
with elementary probabilities P({1}) = - = P({6}) = %. As o-Algebras we take A = {0, {1, 2},

{3, ...,6},Q}, a o-Algebra “unable to make distinctions” for example between 1 and 2. There are
two nontrivial conditional expectations. Denote A;={1,2} and A2={3,...,6} for brevity:
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The two remaining expectations are E[X |#)] =0 and E[X|Q] =E[X]= %

This leads us to consider conditional expectations as being dependent from chance. Formalized,
this gives rise to the following definition:
Definition 4. Conditional expectation with respect to a countable collection of events

Let (B;)icr be an at-most countably collection of disjoint sets B; C Q) with Lﬂie] B, = Q.
We construct the o-Algebra generated by all unions and intersections of B; sets F = o({B;}ic1)-
Consider some probability measure I to complete the probability space (2, F,P).

Let X € LY(P) be a random variable. We define the conditional expectation of X given F as the
random variable

EX|Fl(w)=E[X|B)] < weB;.
Lemma 5.
The random variable from Definition J has the following properties:

o E[X|F] is measurable with respect to F.



e E[X|F]eLYP) and for every A€ F

[4 ]E[X|.7-"]d]P:/4 XdP.
In particular, E[E[X |F]]=E[X]

Remark 6. Measurability and the integral condition will be defining properties for a more general
notion of conditional expectations in the next section. The last property can be taken as “The
mean value of all centers of masses of disjoint subsets is equal to the actual center of mass”.

Remark 7. Note that we took the following order of steps on defining conditional probabilities:
1. Define conditional expectations IE[X |A] on individual events A € 2.
2. Generalize to conditional expectations E[X |F] on a (certain type of) o-Algebra.

This is a natural way of introducing conditional expectations on “simple” events as the expectations
E[X | A] are easily defined but the progression will be reversed for more general types of conditional
expectations: The value of E[X|Y = y| for singular events {Y = y} needs to be derived from the
notion of conditional expectation on o-Algebras.

This can lead to a lot of misunderstandings if ignored.
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Figure 2. Conditional expectation with respect to a o-Algebra as a random variable.

2 Conditional expectation with respect to a o-Algebra

2.1 Why do we need all that?

Consider the following example: The bias B of a bent coin is unknown to us, we model it by a
uniform probability distribution on [0, 1], i.e. every “bentness parameter” is equally possible. Now
denote the result of the coin toss as X. What is the probability of seeing “Heads”, i.e. P[X = H]?
And more concretely, what is

P[X =H|B=0.3]



Intuitively, the last probability needs to be 0.3. We can’t solve that problem with our current
machinery, though:

P(X =H|B=0.3)=E[l{x—m}|B=0.3]]

Tempted to use (1), we would obtain an invalid expression: {B = 0.3} is a singular event in our
case, so its probability is 0. We will derive a better notion of conditional expectation for singular
events in the next section, but first we need conditional expectations on o-Algebras, as announced
in Remark 7.

2.2 Let’s dive in

Let (Q, 2, P) be a probability space, F C 2 be a o-Algebra and X € L*(Q, 2, P). Following our
intuition from Lemma 5, we give the following definition:

Definition 8.
The random variable Y is called conditional expectation of X given F, in symbols Y =E[X |F] if
1. Y 1s measurable with respect to F and
it. For every A€ F one has E[14X]|=E[14Y].
For B € A we call P[B|F]=E[1p|F] the conditional probability of B given F.
For a random variable Z we call E[X |Z]=E[X|o(Z)] the conditional expectation of X given Z.
Theorem 9. E[X |F]| exists and is unique a.s.

Proof. For a proof see for example [1] O

Remark 10. We can argue how our definition of E[X | F] fits in the framework of the last section:
We were able to derive the quantity E[X |G] for G =0 ({B;}icr) and |}, , Bi = Q. This intuitive
notion of conditional expectation fulfills Definition 8 and is by uniqueness thus identically to the
more general version (that justifies our “method overloading”).

Remark 11. Interpretation of conditional expectations w.r.t. a o-Algebra

The condition E[14X] = E[14E[X |F]] on measurable sets A € F can be interpreted as follows:
E[X|F] and X carry the same probability mass on “event chunks” A € F. The measurability
criterion on the conditional expectation means: When we aks ourselves the question, “What’s the
cause for E[X|F]e M, M € B(R)?”, we get an answer that’s only in F, as

(BX|F])"H(M)eF

So if we interpret F as being the information we have and can use, the conditional expectation
gives us a “guess” on X with the same probability chunk but only in terms of events of F.

Theorem 12. Properties of conditional expectation

Let (2,20, P) be as above, G C F C 2 be o-Algebras and Y € L*(Q,2,P). Then
i. (linearity): ENX + Y |F]=)E[X|F]+E[Y|F].
ii. (monotonicity): For X >2Y a.s., E[X|F] > E[Y |F].
iii. (on measurable random variables): For Y measurable w.r.t. F and E[|XY]] < oo,
E[XY|F]=YE[X|F] and E[Y|F]=E[Y|Y]=Y.

iv. (stacking property): E[E[X|F]|G]=E[E[X|G]|F]=E[X|]].



v. (A-inequality): E[| X || F] > |E[X|F].
vi. (on independent random variables): For X independent from F, E[X |F]=E[X].
vii. (on bounded convergent sequences): For Y > 0 and a sequence X,, — X a.s. with
[ Xn| <Y,
nlLr{:OE[Xn|f] =E[X|F] a.s. and in L}(P).
Remark 13. Another interpretation

Intuitively, IE[X | F] is the best prediction we can make about the value of X if we only know
information on the events in the smaller o-Algebra F.

Property 7. then means that if all preimages of Y are in the (known) o-Algebra F, then our guess
is very precise, i.e. E[X|F]=X.

Property vi. states that if the random variable X is independent from our knowledge F, our best
guess is just the ordinary expectation value.

For L2-integrable random variables we have another intuitive way of thinking about conditional
expectations:

Theorem 14. Conditional expectation as a projection

Let F CA be a o-Algebra and X be a random variable with finite variance E[X?] < oo. Then E[X |F]
is the orthogonal projection of X on L?(Q, F,P). This means that for every F-measurable Y with
finite variance E[Y?] < oo,

E[(X -Y)? > E[(X - E[X|F])?]
with equality if and only if Y =E[X|F].

Remark 15. A last attempt on interpretation

Theorem 14 thus states that conditional expectation is really the best guess among all F-meas-
urable random variables Y in the sense that it is the one with the smallest distance to X, if we
interpret variance as a distance (which is legitimate given L? is a normed vector space)

L3(Q,2,P)={X'e L*(Q):Y isA-measurable}

L3(Q,F,P)={Y € L*(Q):Y is F-measurable}

E[X 7]

Figure 3. Conditional expectation as a projection



3 Conditional expectation with respect to singular events

Lemma 16. Factorization lemma
Let (2,20) and (', 2") be two measure spaces and f: Q2 — Q' be a map.

For any g: Q@ —R=RU{oo} we have the following equivalence:

gis o(f)-measurable <  There is a measurable map ¢: (Q',2") — (R, B(R)) with g= ¢ o f

Figure 4. A counterexample for the Factorization Lemma: Assume Q = {w1, ws} and Q' = {w}. Choose
standard o-Algebras A="P(2), ' =P(£2’) and B(R). This set of mappings does not fulfill the requirements
of the Factorization Lemma: The concatenation ¢ o f is not equal to g, as g o f(ws2) = p(w’) = ra, whereas
g(w2) =71. This is due to the fact that g is not o( f)-measurable: o(f) ={f1(A")|A’ € A'} = {0, {w1,wa}}.
Now for small ¢, the set R=(r1 — ¢, 71+ ¢) is open but g~ (R) = {w1} ¢ o(f). Intuitively, the problem is
that g and f “cluster” events in 2 differently: For g, both single events have different results whereas f
groups them together.

Existence of conditional expectations w.r.t. a singular event can be proven (non-constructivistic-
ally) by this lemma:

Assume X: (Q,2,P)— (E,£) is a random variable into an measurable space E and Z =E[Y |0(X)]:
(©,2(,IP) - R be the conditional expectation of a random variable Y. According to the factorization
lemma, there exists a map ¢: F— R such that ¢ is (£, B(R))-measurable and ¢(X)=E[Y |0(X)].
If X is surjective, ¢ is uniquely defined. In this case we write p = Z o X!, for Z = E[Y |0(X)]
even though the inverse of X doesn’t exist.

Definition 17. Conditional expectation with respect to a continous random variable’s results

Let Y € LYP) and X: (Q,) — (E, E). Then we call the function ¢ from above for Z = E[Y |X]
as the conditional expectation of Y given X = z, in terms E[Y|X = z|. By analogy, we write
P(A|X =x)=E[14|X =z] for Acl.

This means that E[Y | X =z] =E[Y|X]{X =z}).

Beware that o = Z o X1 only a.e. The exception set for this equality depends on the function Y
or, in the conditional probability case, on the set A.



Remark 18. Why can we reasonably call ¢ by E[Y|X = :]? In the regular case (discrete X),
the construction is parallel to the regular E[Y|X =] (see Definition 4) and for the irregular case
(continous X), this mapping extracts the right portion out of E[Y | X].

Remark 19. We note that the conditional expectation E[Y|X = ] is not defined on a set of
measure 0, i.e. E[Y|X =2x] makes only sense for a.s. all € E where the exception set is dependent
of Y.

(E,€)

o(X)={X"Y(B),Be&)}
E[Y]X]

- L

/ E[Y|X =]

EY [ X]{X=2})=E[Y[X =z

Figure 5. Conditional expectation w.r.t. singular events as concatenation of cond. exp. w.r.t. a random
variable’s o-Algebra o(X) and the inverse image of X.

Why aren’t we done? The factorization lemma yields a function (later called E[Y'| X ="]) for every
random variable Y. If we’re only interested in single expectations, we’re done. The definition of
P(A|X =) carries a hidden pitfall, though: The conditional probability of A given X =z is defined
via the conditional expectation of 14 given X =x. In remark 19 we saw that the exception set of
the definition of conditional expectations is dependent of the function Y. Hence, the definition of
P(A|X =z) makes only sense for a A-dependent subset of z’s. For different A we might fear that
the exception sets amount to more than a set of measure 0, so we can’t define a “joint measure”
P(-| X =) but for a set of x’s of measure 0. Thus, if we want to work with conditional probabilities,
we first have to show that this cannot happen.

4 Regular Version of Conditional Probability
Intuitively, the problem is the “disconnectedness” of (2,2() and (E, ). Our definition of conditional

expectations E[1 4] X = z] is non-uniform over the range of possible sets A € 2. The next definition
incorporates the correct notion for making that connection uniformly:

Definition 20. Markov Kernel

For (Q1,21) and (Q2,203) measurable spaces we call a mapping k: Q21 X A2 — [0, 00] a Markov Kernel
from Q4 to Qo, if

i. wy— K(wr, A2) is Aq-measurable for every Az € s,



it. Ao kw1, A2) is a probability measure on (Qo,As) for every wy € ;.

Definition 21. Regular Version of Conditional Probability

Let Y: (2, ) — (E, &) be a random variable and F C 2 be a sub-o-Algebra. Assume we have a
stochastic kernel ky r from (2, F) to (E,E) fulfilling

/1B(Y)-1Ad]P://-cy,;(-,B)-1Ad]P for every Ae F and BEE,

i.e. ky r(w,B)=P{Y € B}|F)(w) for P-a.s. weQ and every B €.
Then we call Ky, F a regular version of the conditional probability of Y given F.

For F = o(X) for some random variable X, we call Ky 5 = Ky o(x) a regular version of the
conditional probability of Y given X.

Remark 22. This means that Ky 7 is a conditional probability in the sense of definition 17 but
also regular in the sense that there is a “good” correspondence between target sets of Y and events
w, also P({Y € B}|F) is now a probability measure for sets of the type {Y € B} for almost all
w € Q (see the definition of Markov Kernels).

Theorem 23. FExistence of reqular versions of conditional probabilities

For Y: (2, 2) — (R, B(R)) a rea-valued random variable, there is a regular version of the
conditional probability distribution P({Y €-}|.F).

Proof. See [1]. O

Example 24. Most important example: Conditional densities

Let X, Y be real random variables with joint probability density f, i.e. P(X € A, Y € B) =
[ 4 g f(z,y)d(z, y). The marginalization [ f(z,y)dy= fx(x) is the density of X. Then the
regular version of the conditional probability of Y given X has a density given by

frix(@ y)= J}(j(’;).

P(Y edy|X =x)

As a symbol we also write fy|x(z,y)= Fm

Proof. We need to show that P({Y € B}|X =z)= [ , fy|x(y,2)dy in the sense of definition 21:
Measurability of [, fy|x(y,2)dy is obtained by Fubini and

AIP({YEB}IX:x)IP(Xde) = A A fy1x(z, y)dyP(X € dx)
A/Bf(x, y)dy]l’(f)i—(eg)ifv)
- Aéf(x’ y)dydx

= P(X €A YeB)

where the penultimate equality already constitutes the definition of the regular version of condi-
tional probability. O
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