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Abstract

Following [1], we give a review over the standard theory of expectation values with a decisive
focus on an intuitive view on this topic.

1 Revision of basic theory: Conditioning on regular events
and �-Algebras of simplest type

We assume that the reader is already familiar with basic conditional probability theory (e.g. �Given
the information that the sum of two dice is 9, what is the probability for the �rst dice to show a
5?�) and that he has an understanding of the following topics:

Theorem 1. Law of total probability

Let (
;A;P)be a probability space and (Bi)i2I an at-most countably collection of disjoint sets with
P
¡U

i2I Bi
�
=1. Then for every event A2A

P(A)=
X
i2I

P(AjBi) �P(Bi)

Theorem 2. Bayes' theorem

Let (
;A;P)be a probability space and (Bi)i2I an at-most countably collection of disjoint sets with
P
¡U

i2I Bi
�
=1. Then for every event A2A having probability P(A)> 0 and every k 2 I

P(BkjA)=
P(AjBk) �P(Bk)P
i2I P(AjBi) �P(Bi)

De�nition 3. Conditional expectation of random variables on regular events

Let X 2 L1(P)(i.e. X has a �nite �ordinary� expectation) and A 2 A be an event with probability
P(A)>0. Then we de�ne

E[X jA]�
Z
X(!)P(d! jA)= E[1AX ]

P(A)
=

E[1AX]
E[1A]

(1)

For A2A with probability P(A)= 0 we set E[X jA] = 0.

According to the last term we can interpret the conditional expectation as the center of mass of
X on A, just like the common expectation E[X] can be thought of as the center of �probability
mass� on the whole probability space.
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Figure 1. A visualization of conditional expectation: The contour plot in grey denotes contour lines of
the density function. The expectation value will in this case be near the maximum of the density function
as there is a lot of probability mass around it. The shade in red denotes a measurable set (event) A. The
center of mass of X's probability distribution conditioned on A is depicted as well.

Having de�ned conditional expectations on speci�c events A by E[X jA] we could ask ourselves if
we can generalize that notion to collections of sets A. In probability theory, those are �-Algebras.

Consider a common dice with six sides. We choose the probability space canonically: 
=f1;2; :::; 6g
with elementary probabilities P(f1g) = ��� = P(f6g) = 1

6
. As �-Algebras we take A = f;; f1; 2g;

f3; :::; 6g;
g, a �-Algebra �unable to make distinctions� for example between 1 and 2. There are
two nontrivial conditional expectations. Denote A1= f1; 2g and A2= f3; :::; 6g for brevity:

E[X jA1] =
E[1A1X ]
P(A1)

=

1

6
� (1+2)

2

6

=
3
2

E[X jA2] =
E[1A2X ]

P(A2)
=

1

6
� (3+4+5+6)

4

6

=
9
2

The two remaining expectations are E[X j;] = 0 and E[X j
]=E[X ] =
7

2
.

This leads us to consider conditional expectations as being dependent from chance. Formalized,
this gives rise to the following de�nition:

De�nition 4. Conditional expectation with respect to a countable collection of events

Let (Bi)i2I be an at-most countably collection of disjoint sets Bi � 
 with
U
i2I Bi = 
.

We construct the �-Algebra generated by all unions and intersections of Bi sets F � �(fBigi2I).
Consider some probability measure P to complete the probability space (
;F ;P).
Let X 2L1(P) be a random variable. We de�ne the conditional expectation of X given F as the
random variable

E[X jF ](!) =E[X jBi] , ! 2Bi:

Lemma 5.
The random variable from De�nition 4 has the following properties:

� E[X jF ] is measurable with respect to F.
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� E[X jF ]2L1(P) and for every A2FZ
A

E[X jF ]dP=
Z
A

XdP:

In particular, E[E[X jF ]] =E[X]

Remark 6. Measurability and the integral condition will be de�ning properties for a more general
notion of conditional expectations in the next section. The last property can be taken as �The
mean value of all centers of masses of disjoint subsets is equal to the actual center of mass�.

Remark 7. Note that we took the following order of steps on de�ning conditional probabilities:

1. De�ne conditional expectations E[X jA] on individual events A2A.

2. Generalize to conditional expectations E[X jF ] on a (certain type of) �-Algebra.

This is a natural way of introducing conditional expectations on �simple� events as the expectations
E[X jA] are easily de�ned but the progression will be reversed for more general types of conditional
expectations: The value of E[X jY = y] for singular events fY = yg needs to be derived from the
notion of conditional expectation on �-Algebras.

This can lead to a lot of misunderstandings if ignored.

E[X jA2] = 4.5E[X jA1] = 1.5

A1 A2

P(!2)=
2

3
P(!) =

1
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Figure 2. Conditional expectation with respect to a �-Algebra as a random variable.

2 Conditional expectation with respect to a �-Algebra

2.1 Why do we need all that?

Consider the following example: The bias B of a bent coin is unknown to us, we model it by a
uniform probability distribution on [0; 1], i.e. every �bentness parameter� is equally possible. Now
denote the result of the coin toss as X. What is the probability of seeing �Heads�, i.e. P[X =H]?
And more concretely, what is

P[X =H jB= 0.3]
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Intuitively, the last probability needs to be 0.3. We can't solve that problem with our current
machinery, though:

P(X =H jB= 0.3) =E[1fX=HgjB= 0.3j]

Tempted to use (1), we would obtain an invalid expression: fB = 0.3g is a singular event in our
case, so its probability is 0. We will derive a better notion of conditional expectation for singular
events in the next section, but �rst we need conditional expectations on �-Algebras, as announced
in Remark 7.

2.2 Let's dive in

Let (
; A;P) be a probability space, F � A be a �-Algebra and X 2 L1(
; A;P). Following our
intuition from Lemma 5, we give the following de�nition:

De�nition 8.

The random variable Y is called conditional expectation of X given F, in symbols Y =E[X jF ] if

i. Y is measurable with respect to F and

ii. For every A2F one has E[1AX ] =E[1AY ].

For B 2A we call P[B jF ]�E[1B jF ] the conditional probability of B given F.
For a random variable Z we call E[X jZ]�E[X j�(Z)] the conditional expectation of X given Z.

Theorem 9. E[X jF ] exists and is unique a.s.

Proof. For a proof see for example [1] �

Remark 10. We can argue how our de�nition of E[X jF ] �ts in the framework of the last section:
We were able to derive the quantity E[X jG ] for G = �(fBigi2I) and

U
i2I Bi=
. This intuitive

notion of conditional expectation ful�lls De�nition 8 and is by uniqueness thus identically to the
more general version (that justi�es our �method overloading�).

Remark 11. Interpretation of conditional expectations w.r.t. a �-Algebra

The condition E[1AX ] = E[1AE[X jF ]] on measurable sets A 2 F can be interpreted as follows:
E[X jF ] and X carry the same probability mass on �event chunks� A 2 F . The measurability
criterion on the conditional expectation means: When we aks ourselves the question, �What's the
cause for E[X jF ]2M , M 2B(R)?�, we get an answer that's only in F , as

(E[X jF ])¡1(M)2F

So if we interpret F as being the information we have and can use, the conditional expectation
gives us a �guess� on X with the same probability chunk but only in terms of events of F .

Theorem 12. Properties of conditional expectation

Let (
;A;P) be as above, G �F �A be �-Algebras and Y 2L1(
;A;P). Then

i. (linearity): E[�X +Y jF ] =�E[X jF ] +E[Y jF ].

ii. (monotonicity): For X >Y a.s., E[X jF ]>E[Y jF ].

iii. (on measurable random variables): For Y measurable w.r.t. F and E[jXYj]<1,

E[XYjF ] =YE[X jF ] and E[Y jF ] =E[Y jY ] =Y :

iv. (stacking property): E[E[X jF ]jG ] =E[E[X jG ]jF ] =E[X jG ].
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v. (M-inequality): E[jX j j F ]> jE[X jF ].

vi. (on independent random variables): For X independent from F, E[X jF ] =E[X ].

vii. (on bounded convergent sequences): For Y > 0 and a sequence Xn ! X a.s. with
jXnj6Y,

lim
n!1

E[XnjF ] =E[X jF ] a:s: and in L1(P):

Remark 13. Another interpretation

Intuitively, E[X jF ] is the best prediction we can make about the value of X if we only know
information on the events in the smaller �-Algebra F .
Property iii. then means that if all preimages of Y are in the (known) �-Algebra F , then our guess
is very precise, i.e. E[X jF ] =X.

Property vi. states that if the random variable X is independent from our knowledge F , our best
guess is just the ordinary expectation value.

For L2-integrable random variables we have another intuitive way of thinking about conditional
expectations:

Theorem 14. Conditional expectation as a projection

Let F�A be a �-Algebra andX be a random variable with �nite variance E[X2]<1. Then E[X jF ]
is the orthogonal projection of X on L2(
;F ;P). This means that for every F-measurable Y with
�nite variance E[Y 2]<1,

E[(X ¡Y )2]>E[(X ¡E[X jF ])2]

with equality if and only if Y =E[X jF ].

Remark 15. A last attempt on interpretation

Theorem 14 thus states that conditional expectation is really the best guess among all F-meas-
urable random variables Y in the sense that it is the one with the smallest distance to X, if we
interpret variance as a distance (which is legitimate given L2 is a normed vector space)

L2(
;A;P) = fX 02L2(
):Y isA-measurableg

L2(
;F ;P)= fY 2L2(
):Y isF -measurableg

�

2

E[X jF ]

X

Figure 3. Conditional expectation as a projection
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3 Conditional expectation with respect to singular events

Lemma 16. Factorization lemma

Let (
;A) and (
0;A0) be two measure spaces and f : 
!
0 be a map.

For any g: 
!R� �R[f1g we have the following equivalence:

g is �(f)-measurable , There is a measurable map ': (
0;A0)! (R� ;B(R� ))with g= '� f




0

R

!1

!2
! 0

r1 r2

f

g

'

Figure 4. A counterexample for the Factorization Lemma: Assume 
 = f!1; !2g and 
0 = f!g. Choose
standard �-Algebras A=P(
), A0=P(
0) and B(R). This set of mappings does not ful�ll the requirements
of the Factorization Lemma: The concatenation ' � f is not equal to g, as ' � f(!2) = '(! 0) = r2, whereas
g(!2)= r1. This is due to the fact that g is not �(f)-measurable: �(f)= ff¡1(A0)jA02A0g= f;; f!1; !2gg.
Now for small ", the set R= (r1¡ "; r1+ ") is open but g¡1(R) = f!1g 2/ �(f). Intuitively, the problem is
that g and f �cluster� events in 
 di�erently: For g, both single events have di�erent results whereas f

groups them together.

Existence of conditional expectations w.r.t. a singular event can be proven (non-constructivistic-
ally) by this lemma:

Assume X: (
;A;P)!(E;E) is a random variable into an measurable space E and Z=E[Y j�(X)]:
(
;A;P)!R be the conditional expectation of a random variable Y . According to the factorization
lemma, there exists a map ':E!R such that ' is (E ;B(R))-measurable and '(X)=E[Y j�(X)].
If X is surjective, ' is uniquely de�ned. In this case we write ' � Z �X¡1, for Z � E[Y j�(X)]
even though the inverse of X doesn't exist.

De�nition 17. Conditional expectation with respect to a continous random variable's results

Let Y 2 L1(P) and X : (
;A)! (E; E). Then we call the function ' from above for Z =E[Y jX]
as the conditional expectation of Y given X = x, in terms E[Y jX = x]. By analogy, we write
P(AjX =x) =E[1AjX =x] for A2A.

This means that E[Y jX =x]�E[Y jX ](fX =xg).

Beware that '= Z �X¡1 only a.e. The exception set for this equality depends on the function Y
or, in the conditional probability case, on the set A.
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Remark 18. Why can we reasonably call ' by E[Y jX = �]? In the regular case (discrete X),
the construction is parallel to the regular E[Y jX = �] (see De�nition 4) and for the irregular case
(continous X), this mapping extracts the right portion out of E[Y jX ].

Remark 19. We note that the conditional expectation E[Y jX = �] is not de�ned on a set of
measure 0, i.e. E[Y jX=x] makes only sense for a.s. all x2E where the exception set is dependent
of Y .

X(
; �(X))� (
;A)

�(X)= fX¡1(B); B 2Eg

(E; E)

fX =xg2 �(X)

R

E[Y jX ]

E[Y jX ](fX =xg)=E [Y jX =x]

E[Y jX = �]

Figure 5. Conditional expectation w.r.t. singular events as concatenation of cond. exp. w.r.t. a random
variable's �-Algebra �(X) and the inverse image of X.

Why aren't we done? The factorization lemma yields a function (later called E[Y jX= �]) for every
random variable Y . If we're only interested in single expectations, we're done. The de�nition of
P(AjX=x) carries a hidden pitfall, though: The conditional probability of A givenX=x is de�ned
via the conditional expectation of 1A given X =x. In remark 19 we saw that the exception set of
the de�nition of conditional expectations is dependent of the function Y . Hence, the de�nition of
P(AjX=x) makes only sense for a A-dependent subset of x's. For di�erent A we might fear that
the exception sets amount to more than a set of measure 0, so we can't de�ne a �joint measure�
P(�jX=x) but for a set of x's of measure 0. Thus, if we want to work with conditional probabilities,
we �rst have to show that this cannot happen.

4 Regular Version of Conditional Probability

Intuitively, the problem is the �disconnectedness� of (
;A) and (E;E). Our de�nition of conditional
expectations E[1AjX=x] is non-uniform over the range of possible sets A2A. The next de�nition
incorporates the correct notion for making that connection uniformly:

De�nition 20. Markov Kernel

For (
1;A1) and (
2;A2) measurable spaces we call a mapping �:
1�A2! [0;1] a Markov Kernel
from 
1 to 
2, if

i. !1 7!�(!1; A2) is A1-measurable for every A22A2,
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ii. A2 7!�(!1; A2) is a probability measure on (
2;A2) for every !12
1.

De�nition 21. Regular Version of Conditional Probability

Let Y : (
; A)! (E; E) be a random variable and F � A be a sub-�-Algebra. Assume we have a
stochastic kernel �Y ;F from (
;F) to (E; E) ful�llingZ

1B(Y ) � 1AdP=
Z
�Y ;F(�; B) � 1AdP for every A2F and B 2E ;

i.e. �Y ;F(!;B)=P(fY 2BgjF)(!) for P-a.s. ! 2
 and every B 2E.
Then we call �Y ;F a regular version of the conditional probability of Y given F.
For F = �(X) for some random variable X, we call �Y ;F = �Y ;�(X) a regular version of the
conditional probability of Y given X.

Remark 22. This means that �Y ;F is a conditional probability in the sense of de�nition 17 but
also regular in the sense that there is a �good� correspondence between target sets of Y and events
!, also P(fY 2 BgjF) is now a probability measure for sets of the type fY 2 Bg for almost all
! 2
 (see the de�nition of Markov Kernels).

Theorem 23. Existence of regular versions of conditional probabilities

For Y : (
; A) ! (R; B(R)) a real-valued random variable, there is a regular version of the
conditional probability distribution P(fY 2 �gjF).

Proof. See [1]. �

Example 24. Most important example: Conditional densities

Let X; Y be real random variables with joint probability density f , i.e. P(X 2 A; Y 2 B) =R
A�B f(x; y) d(x; y). The marginalization

R
R
f(x; y)dy= fX(x) is the density of X. Then the

regular version of the conditional probability of Y given X has a density given by

fY jX(x; y)�
f(x; y)
fX(x)

:

As a symbol we also write fY jX(x; y)=
P(Y 2 dy jX =x)

dy .

Proof. We need to show that P(fY 2BgjX =x)=
R
B
fY jX(y; x)dy in the sense of de�nition 21:

Measurability of
R
B
fY jX(y; x)dy is obtained by Fubini andZ

A

P(fY 2BgjX =x)P(X 2 dx) =

Z
A

Z
B

fY jX(x; y)dyP(X 2dx)

=

Z
A

Z
B

f(x; y)dy
P(X 2dx)
fX(x)

=

Z
A

Z
B

f(x; y)dydx

=

Z
A

1B(Y )dx

= P(X 2A; Y 2B)

where the penultimate equality already constitutes the de�nition of the regular version of condi-
tional probability. �
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